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DETERMINING OF THE MODULUS OF ELASTICITY BY MEASUREMENT 

OF THE RELATIVE STRAINS WITH STRAIN GAGES  

LABAŠOVÁ Eva - LABAŠ Vladimír, SK 

Abstract 

The contribution is focused on estimating the Young modulus of the testing sample of rectangular 

cross-section by static method. The sample (bar) was loaded by simple bending. Theoretical basis for 

determining the modulus of elasticity are determined by linear elasticity and strength theory and they 

define the relation between Young modulus, maximum normal stress at the edge fibers of the cross-

section and the relative strains. Relative strains are determined by using measurement apparatus and 

measurement system Quantum X MX 840. The aim of the work is to increase intellectual and practical 

skills of students in second and third level of technical universities. 
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URČENIE MODULU PRUŽNOSTI V ŤAHU MERANÍM POMERNÝCH DEFORMÁCIÍ 

TENZOMETRAMI 

Resumé 

Príspevok je zameraný na určenie modulu pružnosti v ťahu pre skúšobnú tyč obdĺžnikového prierezu 

statickou metódou. Tyč bola namáhaná prostým ohybom. Teoretické východiská pre určenie modulu 

pružnosti v ťahu sú založené na poznatkoch z lineárnej pružnosti a pevnosti a vyjadrujú súvis medzi 

modulom pružnosti v ťahu, maximálnym normálovým napätím v krajných vláknach prierezu tyče 

a pomernou deformáciou. Pomerné deformácie sa stanovili na základe merania na zostavenej meracej 

aparatúre a meracej ústredne Quantum X MX 840. Práca podporuje zvyšovanie intelektuálnych 

a praktických zručností študentov na druhom a treťom stupni technických univerzít. 

Kľúčové slová: modul pružnosti v ťahu, prostý ohyb, napätie v priečnom priereze, pomerná 

deformácia 

Introduction  

Modulus of elasticity is a material constant that represents the elastic properties of the materials. 

Size of this parameter depends mainly on type of the material. Modulus of elasticity or Young 

modulus (E) and coefficient of transverse deformation or Poisson ratio () are two independent 

constants that occur in a linear dependences between stress and strain tensors. Young's modulus is 

defined as the ratio of the stress and of the deformation that was induced by the stress (Hooke's Law) 

[1]: 

𝐸 =
𝜎

𝜀
, (1) 

where E [Pa] is the Young modulus,  [Pa] is the tensile (normal) stress,  [-] is the relative strain. 

𝜀 =
∆𝑙

𝑙
, l is extension (or reducing) of body for a given load, l is original length of the body. 

𝜎 =
𝐹

𝑆
, F [N] is size of the load force that acts perpendicular to the cross-section S [m2]. 

Equation (1) shows the importance of a module of elasticity. It is such (intended) stress that causes 

prolongation of the test-sample size by about its total original length ( Modulus of elasticity is 

determined experimentally. The choice of method depends on the geometry of the test samples – 

samples might be fibers, thin wires, strips, rods or thicker bars respectively beams. In the first case 

DOI: 10.5507/tvv.2016.025



Trendy ve vzdělávání 2016 

188 

 

the test samples are subject to the tensile deformation, in the second case they are subject to the 

bending deformation. Depending on the type of loading, these methods are further divided to static 

and dynamic ones. 

Presented contribution describes the determination of the Young's modulus on the basis of the 

deformation bar, which is activated by simple bending. The bar had a rectangular cross-section. One 

side of the bar was loaded by force and the other side of the bar was full fixed. Load force was realized 

by balance of known mass. According to the way of the loading, we might talk about a static method. 

Relative strains are determined by using measurement apparatus and measurement system Quantum 

X MX 840. 

1 Determination of the modulus of elasticity for the test sample (bar), which is loaded by 

simple bending  

In this method, we considered deformation of the body is caused by bending. Bar, full fixed on 

the one end, is loaded by bending moment, (from force F), Fig.1. The force F causes the deflection 

of the bar. Deformation of bar due to its own weight might be considered to be very small and 

therefore it could be left. The neutral fiber that passes through the center of the cross-section and 

along the length of the bar have the same length in the undeformed and also in the deformed bar. The 

fibers above the neutral fiber are prolonged due to the tension by bending sample, fibers below the 

neutral fiber are shortened due to the pressure. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Loading and fixed of the bar a) undeformed shape; b) deformed shape 

It is necessary to know the course of bending moments and transversal forces to determine the 

stress in each cross-section of bar. Based on the knowledge of elasticity, the size of bending moment 

in the distance x (Fig. 1) is: 

𝑀0(𝑥) = 𝐹 ∙ 𝑥, (2) 

where M0(x) [Nm] is the bending moment, F [N] is the loading force, x [m] is the distance from free 

end bar. 

Extreme normal stresses in given cross-section appears in edge fibers of cross-section S (S = 

const.), Fig.2: 

𝜎𝑚𝑎𝑥 =
𝑀0(𝑥)

𝐽𝑧
𝑦max =

𝑀0(𝑥)

𝑊0
, (3) 

where Jz [m
4, mm4] is second moment of area (for rectangular cross-section is Jz = bh3/12), W0 [m

3, 

mm3] is section modulus in bending (for rectangular cross-section is W0 = Jz / ymax = bh2/6), ymax = 

h/2. 

The shear stresses of shear force are null (by Fig. 2) for edge fibers of the bar [1]. The angle 

strain is null for the cross-section under simply bending only relative strain is created here. The size 

 F 

x 

+

-

 F 

l 

x 

 S 

 a)  b) 



Trendy ve vzdělávání 2016 

189 

 

of the relative strain changes along section height according to the distance y to the neutral axis 

(neutral fiber). Greatest prolongation (+) respectively greatest shortening (-) appears in extreme 

fibers, where is greatest normal stress [2]. 

 

 

 

 

 

 

 

 

 

 

 

Fig.2 The normal and shear stresses diagram in any rectangular cross-section of bar 

If it is possible to measure the relative strain than, it is possible to determine modulus of elasticity 

test bars on the base of the following equations (1) to (3): 

𝐸 =

𝑀0(𝑥)

𝑊0

𝜀
=

𝐹∙𝑥

𝑏∙ℎ2

6
∙𝜀

=
6𝐹

𝑏∙ℎ2

𝑥

𝜀
. 

(4) 

2 The strain-gage measurement of relative strains 

Figure 3 shows the scheme of the measurement apparatus, which was formed to determine the 

dependence of the relative strains on loading. The bar of rectangular cross-section was used as test 

sample. One end of the bar was fixed attached to the metal frame, Fig. 4. 

 

Fig. 3 The scheme of measurement apparatus 

Weight was suspended on the free end of the bar, which created the force F of size F = mg ( g is 

gravitational acceleration). Two strain gages were standardly glued to the surface of the test sample. 

One strain gage was glued on the upside of the bar at a distance l from free end of the bar, Fig. 4. 
Second strain gage was glued on the underside of the bar, at the same distance l from free end of the 

bar. The axis of the strain gages were parallel with the neutral fiber of the bar. Measuring strain 
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gauges were loaded by maximum normal stress and they could record the relatively strains on the 

surface of the bar. Measuring strain gauges  were linked in half bridge and connected to a universal 

measurement system QuantumX MX840 , which was controlled by computer . Program Catman 

Easy from firm HBM was used to record data, manage the measurement system and to process the 

obtained data [2,3]. 

 

 

Fig. 4 Metal frame with a test sample and the view on strain gauge glued on the upside of the bar 

Strain gauge transducers 6JP with ohmic value of 117 Ω and with Gage factor k = 2.01 were used 

for measures. Connection of sensors with a measuring system was performed using Ethernet cables. 

It is necessary to enter attach value of the Bridge factor to the program. Value of the Bridge factor 

reflects the involvement and number of strain gauges in the Wheatstone bridge, Fig. 3. 

In practice, following equation can be used to determine the strain [4]: 
∆𝑈0

𝑈𝑛
=

1

4
𝑘(𝜀1 − 𝜀2 + 𝜀3 − 𝜀4) =

1

4
𝑘𝜀𝑣 = 𝐵𝑟

1

4
𝑘𝜀𝑣, (5) 

where U0 is output voltage, Un is driving voltage, k is Gage Factor, i are individual relative strains,v 

is result strain, Br is Bridge Factor. 

Also, Fig. 3 shows scheme of the Wheatstone bridge with two measuring strain gauges. Resistors 

R1 a R2 were replaced by measuring strain gauges. In a bridge: 

𝜀1 = −𝜀2 ≠ 0 a 𝜀3 = 𝜀4 = 0, |𝜀1| = |𝜀2| = 𝜀𝑉. (6) 

Substituting equation (6) into (5) we get: 
∆𝑈0

𝑈𝑛
=

1

4
𝑘(𝜀1 − 𝜀2) = 2

1

4
𝑘𝜀1. (7) 

From the last relationship we see that: Br = 2 a v = 1. 

3 The calculation of the value of elasticity modulus  

Loading force was triggered by weights of mass m = 169.27 10-3 [kg] and its size is: 

𝐹 = 𝑚 ∙ 𝑔 = 169.27 ∙ 10−3[kg] ∙ 9.81[m ∙ 𝑠−2] = 1660.54 ∙  10−3[N]. 

The dimensions of the bar of rectangular cross-section are: 

width b = 19.55 10-3 [m], thickenss h = 1.75 10-3 [m]. 

Distance between axis strain gauges and line for application of the force: l = 257.50 10-3 [m]. 

The total length of the sample was 268 10-3 [m]. 

Table 1 contains values of the relative strains obtained using the measurement system QuantumX 

MX840. 
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Table 1 Measured and calculated values 

 +for tensile) [m/m] - for pressure) [m/m] v [m/m]

measurement   

 measurement   

 measurement   

average 

All measured values were substituted into relationship (4): 

𝐸 =
6𝐹

𝑏∙ℎ2

𝑙

𝜀
=

6∙1660.54∙ 10−3

19.55 10−3∙(1.75 10−3)2

257.50 10−3 

0.00020517
= 2.088 ∙ 1011 [

𝑁

𝑚2] = 2.088 ∙ 105[MPa]. 

Supplier of test sample declared that the size the modulus of elasticity is 2.1105 MPa. By this 

method we obtained value of the relative error 0.57% using determination E. The obtained value is 

accurate sufficiently. Mechanical table declares value of the modulus of elasticity for hauled steel in 

range (1.9 to 2.15)105 MPa. The obtained value is located in the given range. 

Summary 

The contribution deals with determination of the shear modulus for bar with rectangular cross-

sections with the unknown material properties. Relative strains were detected experimentally for 

given loading force, more measurements were realized at shorter time intervals. The bar was loaded 

under simple bending. Young modulus was calculated by relations of the elementary elasticity using 

the obtained measured values. To experimentally obtain the unit less strain tenzometric sensors 

connected to half bridge and universal measurement system QuantumX MX840 were used. 

The described method enables to determine the modulus of elasticity for the test samples of 

unknown material properties in the laboratory. This method is suitable for inclusion in the teaching 

process at the technical universities. Thus, the students have the opportunity to see the link between 

theory and practice and to gain practical skills with universal measurement system. 
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