Trends in education, 2008 (vol. 1), issue 1

TVV 2008, 1(1):323-327

ON OPTIMAL CONTROL OF DYNAMIC SYSTEMS USING THE ALGORITHM OF NUMERICAL METHODS

HRUBINA Kamil1, JADLOVSKÁ Anna2
1 Pardubice, Nám. Čs. legií 565, 532 10 Pardzbice, Czech Republic
2 931, fax +421 51 7733 453,

The paper solves the problem of the dynamic system optimal control or process. Behaviour of the dynamic system is described by the system of differential equations. In order to solve the defined task of optimal control, the author presents the created algorithm based on the successive approximations method. The algorithm was realised within MS Excel environment.

Keywords: optimal control, algorithm of the successive approximations method, Hamilton function

Published: July 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HRUBINA, K., & JADLOVSKÁ, A. (2008). ON OPTIMAL CONTROL OF DYNAMIC SYSTEMS USING THE ALGORITHM OF NUMERICAL METHODS. Trends in education1(1), 323-327
Download citation

References

  1. ATHANS, M. et al: Neccessery and Sufficient Conditions for Differentiable Nonscalar Valeced Funtions to Atlain Extrema IEEE Trans. On Aut. Control, 1973, Vol. AC-18, No 2 Go to original source...
  2. BELLMAN, R.: Dynamic programming, 1967, New York, Princenton University Press
  3. BUTKOVSKIJ, A. G.: Metody upravlenija sistemami s raspredelenymi parametrami, Nauka Moskva, 1975
  4. HRUBINA, K.: Algorithm Applications to Determine optimum Trajectories of the Controlled Process, IFAC workshop on Programmable Devices and Systems, PDS 2003, TU Ostrava, 2003, pp. 75-78
  5. HRUBINA, K. - JADLOVSKÁ, A.: Optimal control problems solved by the Application of Algorithms of Numerical Method, Chapter 26, DAAAM International Scientific Book 2004, pp. 265-282, Vienna, Austria, ISBN 3-901509-38-0, ISSN 1726-9687
  6. HRUBINA, K. - JADLOVSKÁ, A.: Optimal control and Approximation of Varational Inequalitus, Kybernetes, The International Yournal of Systems and Cybernetics, MCB University Press of England, Vol. 31, No 9/10, 2002, pp. 1401-1408 Go to original source...
  7. JADLOVSKÁ, A. et al: Algorithms for Optimal Decision Making and Processes Control, Chapter 21, DAAAM International Scientific Book 2005, pp. 253-290, Vienna Austria, ISBN 3-901509-43-7, ISSN 1726-9687
  8. LIONS, J. L.: Contrôle optimal de systémes gouvernés par des aquations aux derives partielles, Dunod Gautier-Villars, Paris, 1986
  9. PONTRYAGIN, L. S. et al: Matematičeskaja teorija optimaµnich procesov, Nauka Moskva, 1983

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.