Trends in education, 2008 (vol. 1), issue 1

TVV 2008, 1(1):328-332

METHODS AND ALGORITHMS FOR DEFINED TASKS SOLUTIONS OF PROCESSES OPTIMAL CONTROL

HRUBINA Kamil
Fakulta výrobných technológií TU v Košiciach so sídlom v Prešove, Bayerova 1, 080 01

The paper presents some results of original and application character obtained by its author in the field of mathematical theory of processes optimal control using informatics. The task of system optimal control using operator equations has been defined. Algorithms for numerical solution of described tasks of processes optimal control using PC are also presented.

Keywords: Systems, mathematical model, optimal control problem, operators equations, algorithms

Published: July 1, 2008  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HRUBINA, K. (2008). METHODS AND ALGORITHMS FOR DEFINED TASKS SOLUTIONS OF PROCESSES OPTIMAL CONTROL. Trends in education1(1), 328-332
Download citation

References

  1. BELLMAN, R. Dynamic programming, New York, Princenton University Press, 1967
  2. BUTKOVSKIJ, A. G. Metody upravlenija sistemami s raspredelenymi parametrami, Nauka, Moskva, 1975
  3. HRUBINA K. Optimal control problems for systems with distributed parameters and their solution using algorithms of numerical methods. Electrical Engineering Journal, r. 43, č. 6, 1992, pp. 187-192
  4. HRUBINA K. Solving optimal control problems for systems with distributed parameters by means of iterative algorithms of algebraic methods. Kybernetika a informatika, roč. 6, č. 1, 1993, s. 48-64
  5. HRUBINA K. Optimum control problems for systems with distributed parameters and their solution using the finite element method algorithm. Journal of Electrical Engineering, r. 44, No. 1, 1993, pp. 11-20
  6. HRUBINA K. Optimal Control of Processes based on the use of Informatics Methods, Informatech Košice, 2005, 286 s., ISBN 80-88941-30-X
  7. HRUBINA K. - JADLOVSKÁ, A. Optimal control problems solved by the Application of Algorithms of Numerical Method, Chapter 26, DAAAM International Scientific Book 2004, pp. 265-282, Vienna, Austria, ISBN 3-901509-38-0, ISSN 1726-9687
  8. HRUBINA K. - JADLOVSKÁ, A. Optimal control and Approximation of Variational Inequalitus, Kybernetes, The International Journal of Systems and Cybernetics, MCB University Press of England, Vol. 31, No. 9/10, 2002, pp. 1401-1408 Go to original source...
  9. HRUBINA K. Numerické riešenie úloh optimálneho riadenia systémov s rozloženými parametrami využitím algoritmov algebraických metód. Manufacturing Engineering/Výrobné inžinierstvo. FVT TU Prešov, č. 2, roč. 2007, s. 81-84
  10. LIONS, J. L. Contrôle optimal de systémes gouvernés par des equations aux derives partielles, Dunod Gautier-Villars, Paris, 1986
  11. PONTRYAGIN, L. S. et al Matematičeskaja teorija optimaľnich procesov, Nauka, Moskva, 1983
  12. ZADEH, L. A. - DESOER, C. A. Linear System Theory. The State Space Approach. Mc Graw-Hill, 1963

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.