Trends in education, 2010 (vol. 3), issue 1

TVV 2010, 3(1):104-108

LJAPUNOV STABILITY THEORY OF LINEAR AND NONLINEAR SYSTEMS AND TRANSFORMATION

HRUBINA Kamil, JADLOVSKÁ Anna, MAJERČÁK Jozef
a informatiky. Katedra kybernetiky a umelej inteligencie. Letná 9, 040 01 Košice, SR

The paper deals with the investigation of nonlinear systems stability, a characteristic exponent and asymptotic stability. It also deals with the Lyapunov transformation to carry out a linear system whose matrix elements are functions of a system with a constant matrix.

Keywords: cybernetics, nonlinear systems stability, the Lyapunov transformation.

Published: July 1, 2010  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
HRUBINA, K., JADLOVSKÁ, A., & MAJERČÁK, J. (2010). LJAPUNOV STABILITY THEORY OF LINEAR AND NONLINEAR SYSTEMS AND TRANSFORMATION. Trends in education3(1), 104-108
Download citation

References

  1. ATHANS, M., FALB, P. 1966. Optimal Control (An introduction to the Theory and Its Aplications). McGRAW - HILL BOOK COMPANY, New York, 867 p.
  2. HRUBINA, K., JADLOVSKÁ, A., MAJERČÁK, J., 2009. Stabilita systémov a asymptotické vlastnosti riešenia sústav diferenciálnych rovníc s premennými koeficientmi. In: Macurová A. a kol. Chapters about Solutions Differential Aquations Systems. Monografia Tribun EU Brno., s. 145, ISBN 978-80-7399- 871-4.
  3. JADLOVSKÁ, A. et al., 2005. Algoritm for optimal Decision Making Processes Control, Chapter 21, In Katalinič, B. (Ed), DAAAM International Scientific Book, Austria, 2005, pp. 253-290.

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.