Trends in education, 2015 (vol. 8), issue 1

TVV 2015, 8(1):10-17

HOW TO SOLVE THE PROBLEM OF FINDING THE GREATEST COMMON DIVISOR

ANTOŠ Karel
Katedra přírodních věd, VŠTECB v Českých Budějovicích, Okružní 517/10, 370 01 České, Budějovice

This article discusses the possibilities and ways of exploring mathematical problems. It shows that the research approach in the field of mathematical research is a method by which a teacher can not only teach, but which enables pupils and students to learn, make experiments and find different solutions of different mathematical problems. The creative element is shown here on the problems of finding the greatest common divisor of natural numbers.

Keywords: divisibility, integers, experimenting, proving, greatest common divisor.

Published: July 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
ANTOŠ, K. (2015). HOW TO SOLVE THE PROBLEM OF FINDING THE GREATEST COMMON DIVISOR. Trends in education8(1), 10-17
Download citation

References

  1. CALDA, E., PETRÁNEK, O., ŘEPOVÁ, J. Matematika pro střední odborné školy a studijní obory středních odborných učilišť. Praha: Prometheus, 2006. ISBN 80-7196-041-1.
  2. FROBISHER, L. Problems, Investigation and Investigative Approach. In: Issue in Teaching Mathematics. Cassel London 1994.
  3. KOPKA, J. Umění řešit matematické problémy. Ústí n. Labem: UJEP, 2013. ISBN 978-80903625-5-0.
  4. KOPKA, J. Zkoumání ve školské matematice. Ružomberok: Katolická Univerzita, 2005. ISBN 80-8084-064-4.
  5. POLÁK, J. Přehled středoškolské matematiky. Praha: Prometheus, 2008. ISBN 978-80-7196356-1.

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.