Trends in education, 2015 (vol. 8), issue 1

TVV 2015, 8(1):233-240

HOW TO HYPERBOLA WITH GEOGEBRA

KRIEG Jaroslav
Katedra přírodních věd, Vysoká škola technická a ekonomická v Českých Budějovicích, Okružní 517/10, 370 01 České Budějovice

The article shows how to use GeoGebra easily solve problems that lead to the construction of a hyperbola, or how easily construct hyperbola given parameters.

Keywords: hyperbola, planimetric definition hyperbola, hyperbola as an algebraic curve 2nd degree, conic section given five points in GeoGebra, cuts on the rotary conical surface, hyperbola as a set of points given property.

Published: July 1, 2015  Show citation

ACS AIP APA ASA Harvard Chicago Chicago Notes IEEE ISO690 MLA NLM Turabian Vancouver
KRIEG, J. (2015). HOW TO HYPERBOLA WITH GEOGEBRA. Trends in education8(1), 233-240
Download citation

References

  1. KOČANDRLE, M., BOČEK, L. Matematika pro gymnázia: Analytická geometrie. 2. upravené vyd. Praha: Prometheus, 2006. ISBN 80-7196-163-9.
  2. PECH, P. Kuželosečky. 1. vyd. České Budějovice: Jihočeská univerzita, 2004. ISBN 80-7040755-7.
  3. HOHENWARTER, M., HOHENWARTER, J. Introduction to GeoGebra. 141 s. [15.5.2015]. Dostupné z: http://static.geogebra.org/book/intro-en.pdf
  4. GeoGebra [online]. International GeoGebra Institute. [15.5.2015]. Dostupné z: http://tube.geogebra.org/student/m717771
  5. GeoGebra [online]. International GeoGebra Institute. [15.5.2015]. Dostupné z: http://tube.geogebra.org/student/m1044329
  6. GeoGebra [online]. International GeoGebra Institute. [15.5.2015]. Dostupné z: http://tube.geogebra.org/student/m1048877
  7. GeoGebra [online]. International GeoGebra Institute. [15.5.2015]. Dostupné z: http://tube.geogebra.org/student/m1048927

This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.