Trends in education, 2016 (vol. 9), issue 1
TVV 2016, 9(1):175-180 | DOI: 10.5507/tvv.2016.023
VISUALIZATION OF DIFFERENTIAL FUNCTION
- Katedra informatiky a přírodních věd, Ústav technicko-technologický, Vysoká škola technická a ekonomická v Českých Budějovicích, Okružní 517/10, 370 01 České Budějovice, ČR
The article describes how to use GeoGebra geometrically illustrate the concept of differential function and thereby make this concept to students in the basic course of mathematics at the university. The article concludes with a few examples of the application of differential.
Keywords: differential of function, difference, geometric interpretation of differential, freeware GeoGebra, approximation of function
Published: July 1, 2016 Show citation
References
- KAŇKA, M., COUFAL, J. a J. KLŮFA, 2007. Úvod do diferenciálního počtu reálných funkcí jedné reálné proměnné. In: Učebnice matematiky pro ekonomy. Praha: Ekopress, 109 s. ISBN 978-80-86929-24-8.
- MUSILOVÁ, J. a P. MUSILOVÁ, 2009. Funkce jedné proměnné. In: Matematika I pro porozumění i praxi … 2., doplněné vydání. Brno: VUTIUM, s. 127-130. ISBN 978-80-214-36312.
- HOHENWARTER, M. a J. HOHENWARTER, 2013. Introduction to GeoGebra [online]. [Linz]: International GeoGebra Institute, 2013-11-23 [cit. 12. 4. 2016]. Dostupné z: http://static.geogebra.org/book/intro-en.pdf.
- KRIEG, J., 2016. Vizualizace diferenciálu funkce [online]. GeoGebraTube, 2016-04-07 [cit. 2016-04-12]. Dostupné z: https://www.geogebra.org/material/simple/id/3113291.
This is an open access article distributed under the terms of the Creative Commons Attribution-ShareAlike 4.0 International License (CC BY-SA 4.0), which permits use, distribution, and reproduction in any medium, provided the original publication is properly cited. No use, distribution or reproduction is permitted which does not comply with these terms.